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Wave intensity analysis of high frequency
vibrations
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In the statistical energy analysis (SEA) approach to high frequency dynamics it is
assumed that the vibrational wavefield in each component of an engineering
structure is diffuse. In some instances the directional filtering effects of structural
joints can lead to highly non-diffuse wavefields, and in such cases sea will yield a
very poor estimate of the vibrational response. An alternative approach is presented
here in which the directional dependency of the vibrational wavefield in each
component is modelled by using a Fourier series. It is shown that, if required, the
resulting energy balance equations may be cast in the form of conventional sea with
the addition of ‘non-direct’ coupling loss factors. The method is applied to the
bending and in-plane vibrations of various plate structures and a comparison is made
with exact results yielded by the dynamic stiffness method. A significant
improvement over conventional SEA is demonstrated.
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1. Introduction

The analysis of high-frequency vibration levels in engineering structures causes
severe difficulties for standard analysis procedures such as the finite element method
(Zienkiewicz 1977). This approach, and all others that are based on the solution of
the governing constitutive equations, requires an excessive number of degrees of
freedom to capture the short wavelength structure deformation that occurs at high
frequencies. A well-known alternative approach is statistical energy analysis (SEa)
(Lyon 1975) in which a complex structure is represented as an assembly of
subsystems whose vibrational energy levels are calculated from power balance
considerations.

A central tenet of sEa is that within a subsystem there is ‘equipartition’ of
vibrational energy among the constituent modes. From a wave, rather than a modal,
point of view, this principle is equivalent to assuming that the vibrational wavefield
in each structural element is diffuse. Although this assumption may be reasonable in
many cases, there are instances where the directional filtering effect of structural
junctions can lead to wavefields that are far from diffuse; in such cases sga yields a
very poor estimate of the vibrational energy levels (Blakemore et al. 1990; Langley
1992). In this paper an alternative approach is presented in which the directional
dependence of the vibrational wave intensity in each structural component is
modelled by using a Fourier series; if a single Fourier term is used, then conventional
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490 R. 8. Langley and A. N. Bercin

SEA is recovered. This approach, which is referred to as wave intensity analysis (wW1a),
was first developed by Langley (1992) who demonstrated that the method can yield
much improved estimates for the bending vibrations of plate structures.

It is shown here that the power balance equations that arise in wia may, if
required, be cast in the form of conventional ska with the addition of ‘non-direct’
coupling loss factors between subsystems which are not physically connected. This
is consistent with the analysis of Langley (198954, 1990) who demonstrated that non-
direct coupling loss factors may be of significant effect even for structures which
satisfy the conditions which are normally laid down for the successful application of
conventional sEa. The method is applied here to a range of plate structures, and a
comparison is made with exact calculations based on the dynamic stiffness method.
Whereas Langley (1992) considered only bending vibrations, both bending and in-
plane vibrations are considered here, and a significant improvement over con-
ventional SEA is demonstrated.

2. Wave intensity analysis

Engineering structures are normally composed of a number of regular structural
elements such as beams, plates, and shells, which are either bolted, welded, or bonded
together. The differential equation which governs the dynamic response of a typical
element may be written in the general form

L(w)—p*w/0t* = F(x,t), (2.1)

where w(x,¢) is the displacement vector at the spatial location x, p is the mass
density, and F(x,t) is the applied distributed loading. Further L is a structural
differential operator which characterizes the component: in what follows it will be
assumed that each component is homogeneous, so that L does not vary with spatial
position. Equation (2.1) can be used to determine the various types of elastic wave
which can be borne by the component. The concern here is with harmonic plane
waves which have the form w = aexp (ik.x —iwt), where k is the wavenumber vector,
w is the circular frequency, and a is the wave ‘mode’. Valid solutions for k and a at
a specified frequency w may be sought by substituting the assumed wave form into
the homogeneous version of equation (2.1). This yields

[A(k)—pw?lla =0, (2.2)

where I is the identity matrix and the detailed form of the matrix 4 is determined
by the operator L. The n-dimensional wavenumber vector k may be expressed in
terms of the scalar wavenumber p = |k| and a set of n—1 direction cosines, @ say.
With this notation equation (2.2) takes the form

[A(1,0)—pw]a = 0. (2.3)

For specified v and 6, this is an eigenproblem that may be solved to yield the set of
eigenvalues p; and eigenvectors a;. The number of distinct real values of p thus
obtained is equal to the number of distinct types of propagating plane wave of
heading @ that can be borne by the element. For an isotropic element equation (2.3)
is independent of § and the various wavetypes may propagate in all directions. An
example in this category is a flat plate element that will display three distinct values
of p, corresponding to out-of-plane bending waves, in-plane shear waves, and in-
plane longitudinal waves.

Phal. Trans. R. Soc. Lond. A (1994)
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Wave intensity analysis 491

In what follows the high-frequency vibrational response of an engineering
structure is described purely in terms of elastic waves. It is assumed that the
harmonic response of a typical element may be written in the form

w(x,t) = foj(ﬂ) a;(0) exp [ik(y;, 0) . x —iwt] do, (2.4)
iJo

where the sum is over the number of distinct wavetypes displayed by the element
and the integral is over the range of possible wave headings; function f;(#) represents
the amplitude of wavetype j at heading 6. It is further assumed that all phase effects
may be neglected, which implies that the various wave components may be
considered to be uncorrelated. This assumption has two consequences: first, the
response in each component as given by equation (2.4) will be homogeneous with
respect to the location x, and second, resonance peaks and anti-resonance troughs
which are caused by phase effects will not arise. There is evidence to suggest that at
high frequencies the response does tend to become homogeneous providing that the
element is reverberant, has a high modal overlap factor, and a high number of modes
are excited: this aspect has been studied both theoretically and experimentally by
Dowell & Kubota (1985, 1986). Further, at high modal overlap the resonant peaks
do not differ greatly from the frequency average response level, which implies that
phase effects are not significant; at low modal overlap the present approach can be
expected to yield a result which corresponds to the average response over a frequency
band which contains a number of resonant peaks. If the assumption of uncorrelated
wave components is adopted, then equation (2.4) implies that the vibrational energy
density within a typical element may be written in the form

e(w) = ZJ e;(0, w)do, (2.5)
jJeo

where ¢;(0, ) is the energy density associated with wavetype j at heading 6. The
quantities e,(#, ) are taken to be the basic unknowns in the present analysis method,
and a solution is sought by considering power balance.

Although ¢;(6, ») has previously been used to represent the energy density of the
Jth wavetype in a particular component, the notation may be extended so that j is
considered to range over all wavetypes in all components of the built up structure.
Thus, for example, in the case of a structure consisting of two coupled plates j would
range from 1 to 6, covering the three wavetypes which occur in each plate. For each
wavetype j the power input through external forcing, Pi"* say, together with the
power input over the element boundaries P§', must be balanced by the dissipated
power P55 and the power output over the element boundaries Pj°. Thus

Pin0, w) = P{S5(0, w) 4 P§°(0, w) — P50, w). (2.6)

Now most theoretical models of damping imply that the dissipated power is
proportional to the mean stored energy, so that

P9, ) = wi; A;¢,(0,w) = wn, £,(0, 0), (2.7)

where 7, is the loss factor, A4, is the length, area, or volume of the relevant structural

element, and B, = 4,e; is the total energy stored in wavetype j at heading 6. The
power output by wavetype j at a boundary of the element may be written in the form

P50, w) = ¢,(0, w) C4i(0, w) cos (9) L, (2.8)

Phil. Trans. R. Soc. Lond. A (1994)
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where c,; is the group velocity of the wave, ¢ is the angle between the wave heading
and the outward pointing normal to the boundary (assumed to be constant over the
boundary), and L is the appropriate dimension (unity, length or area) of the
boundary. As the concern is with power output, equation (2.8) relates only to those
wave headings for which 0 < ¢ < §n. For clarity, the present analysis is now limited
to two-dimensional isotropic components, although in general the method is equally
applicable to the full range of structural types. It is also convenient at this stage to
introduce the modal density v; which is associated with wavetype j for a two-
dimensional isotropic element: v, = wAd,;/2mc, c,;, where ¢; is the wave phase velocity
and A; is the area of the element. Equation (2.8) can now be written in the form

P(0, ) = (0L /21)[E,(0,w)/v,][cos (0 +in— ) /c;), (2.9)

where the angle i is used to describe the orientation of the boundary, as shown in
figure 1a.

It can be noted that in two dimensions the direction cosine vector @ reduces to the
scalar wave heading 0. Equation (2.9) relates to a single output boundary: more
generally the result must be summed over all boundaries of the element for which
0<o<in

The final term which appears in equation (2.6) is the power input to heading 8 of
wavetype j at the element boundaries. This power will be supplied by one or more
of the other wavetypes; for example, figure 106 illustrates the case in which the power
is supplied by heading ¢ of wavetype i. The power input to a band df of wavetype
J may in this case be written in the form

P50, w)d0 = e,(p, ) cyy(w) cos (P +3n— 1) L7( +3n—1)r) dop, (2.10)

where 7;; is the transmission coefficient between the two Wavetypes By making use
of Snell’ s Law and introducing the modal density of wavetype 7, equation (2.10) may
be rewritten as

P50, w) = (wL/21)[E,(¢, w)/v;][cos (O+ 3t — 1)) /c;]17,;(P +3n— ). (2.11)

This result relates to a single input wavetype and a single input boundary; more
generally the total power input may be obtained by summing over the relevant
boundaries and wavetypes.

By combining equations (2.6), (2.7), (2.9) and (2.11), the total power balance
equation for heading 0 of wavetype j may be written in the form

P00, w) = oy, B0, 0)+ (0/21¢,)[E,(0, w)/v;] Z Ly cos (0+3m—1ry.)
k

= (0/200) BB Gt 0) /¥y 008 (030~ ) (Gt im =), (212)

where the sum over k represents the output boundaries and the sums over m and 4
correspond to the input boundaries and the input wavetypes. An equation of this
form may be derived for each wavetype j and in principle the set of coupled equations
can then be solved to yield the wave energies (0, w). A convenient approach to the
solution of these equations is to expand the angular dependency of the wave energies
in the form of a Fourier series so that

E,(0,0) = S H,;,(0)N,(0), (2.13)

Phil. Trans. R. Soc. Lond. A (1994)
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Boundary

¢,(6,0)

(@ ®)

Figure 1. Schematic of wave incidence at a boundary.

where the shape functions NV, (0) represent the cos (m0) and sin (m0) Fourier terms. By
substituting (2.13) into (2.12) and using the Galerkin procedure, the following set of
linear equations may be derived

CE=P. (2.14)

Here the vector E contains the coefficients E;,/v; and the entries of the matrix C and
the P are given by

21
Cipis = 6ij{w77j v; J:) N,(O)Ny(0)dO+ (w/2mc;) XLy | N, (0)Ny(0) cos(0+%71:—vﬁk)d0}

k 0

—(w/znc»umj N ()N (o) 08 (0+ 31— ) T g 3 — ) A0, (2.15)
m O

21
P,= J P*(0, )N ,(0)do. (2.16)
0

As presented above, the matrix C is not symmetric. The Fourier shape functions can
be grouped into those for which N(f) = N(@+m) (type A, say) and those for which
N(0) = —N(O@+m) (type B, say); it can be shown that coupling terms involving two
type A or two type B Fourier components are symmetric, while those involving a
type A and a type B Fourier component are skew-symmetric. The matrix may
readily be made symmetric by multiplying those rows corresponding to type B
Fourier components by —1. In what follows it will be assumed that this has been
done; the resulting symmetry of the matrix has important implications, as discussed
in §3b. The relation between the present approach and conventional SEA is discussed
in the following section.

3. Relation to statistical energy analysis
(@) Conventional SEA

The simplest approximation to the angular dependence of the wave energies
E,0,v) is to assume that each wave field is diffuse, so that K,(0,w) = E;(v)/2x,
which corresponds to the use of a single Fourier term in equation (2.13). If both sides
of equation (2.14) are in this case multiplied by 2n then it has been shown by
Langley (1992) that a typical coupling term in the matrix C will take the form

J

Ciin=—0v; 201, Wi = Ly, g T8> [(0A; ). (3.1, 3.2)

Phil. Trans. R. Soc. Lond. A (1994)
21 Vol. 346 A


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Here 777 is the coupling loss factor as used in sEa, and {7}}) is the diffuse wave field
transmission coefficient (Lyon 1975). Similarly, Langley (1992) has shown that a
diagonal term in the matrix C will take the form

Cipjn = onv;+ov; 2 3 7. (3.3)
m i#]
Kquations (3.1) and (3.3), together with equation (2.14) constitute conventional SEA.
It thus follows that the present method reduces to standard sea if a single Fourier
component is used in equation (2.13): in this regard the present approach may be
considered to be a natural generalization of SEA.

(b) SEA with non-direct coupling loss factors

It has been suggested that in some applications sea should include coupling loss
factors between subsystems which are not directly coupled (for example, Blakemore
et al. 1990). In fact Langley (1990) has demonstrated that in general these coupling
loss factors are non-zero, and further there is no sound theoretical reason for
assuming that they are negligibly small. However, the calculation of these terms
presents severe difficulties and a general methodology has yet to appear in the
literature. It is shown in this section that wia provides just such a methodology:
equations (2.14)—(2.16) may be recast in the form of conventional sea with the
addition of non-direct coupling loss factors.

The energy vector E which appears in equation (2.14) may be partitioned in
the form E = (E,:E,) where E, contains the diffuse energy components: i.e. those
components which are related to the first (constant) term in the Fourier expansion
of the angular distribution of the wave energy. The partition E, contains the energy
terms which are associated with the second and subsequent terms in the Fourier
expansion. Two points regarding E, can be noted : first, the terms E, are exactly the
energy variables which appear in sea and second, knowledge of E, alone is sufficient
to yield the total energy in an element, as the integral over 8 of all but the first
Fourier term is zero. The central wia equation, equation (2.14), may be partitioned
in terms of E, and E,, to yield

Cll Cln El _ 'l)l
The symmetry of C, as noted in §2, has been employed in this equation. Given the

definition of E, it follows that C,, is precisely the matrix which appears in
conventional sea. Equation (3.4) can be recast in the form

The result is essentially sea with the addition of the triple matrix product which
appears on the left-hand side : this symmetric matrix will contain non-direct coupling
loss factors. The additional power term which appears on the right-hand side will
generally be small or zero, since for most types of loading the input power tends to
be fairly diffuse, so that P, ~ 0. Three important conclusions follow from equation
(3.5): (i) the non-direct coupling loss factors are independent of the applied loading,
(i) the non-direct coupling loss factors are dependent on the system loss factors, as
the diagonals of C,, involve these terms, and (iii) the present approach provides a
reasonably straightforward method by which the non-direct coupling loss factors
may be calculated.

Phil. Trans. R. Soc. Lond. A (1994)
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10log(E, /E))

-80 I L I 1 ]
2 5 8 11 14

plate n

Figure 2. Bending energy distribution in the fifteen plate structure for the one-third octave band
with centre frequency 5 kHz. Unmarked curve: exact results. Diamond symbols: wia results.
Triangle symbols: sEA results.

4. Example applications

In this section the foregoing theory is applied to two example structures. The first
consists of a chain of 15 plates which are all of width 0.85 m. Each plate is rigidly
attached at 90° to its neighbours in the chain so that every second plate is vertical
while the remaining plates are horizontal. The structure is taken to be simply
supported along the two longitudinal edges and clamped along the two transverse
edges. The lengths of the plates (in metres) are 0.9, 1.37, 1.45, 1.1, 0.7, 1.1, 0.9, 0.55,
0.75, 1.1, 0.7, 0.65, 0.95, 0.78 and 1.15. The thicknesses of the plates (in millimetres)
are 10, 6.5 8.4, 3.6, 4.5, 6.3, 5.5, 3.0, 4.4, 5.6, 6.0, 4.0, 3.5, 5.2 and 6.5. Each plate is
made from steel, which has Young’s modulus £ = 2 x 10 N m™2, mass density p =
7800 kg m~2, and Poisson ratio v = 0.3. Exact results for the dynamic response of
this structure have been obtained by using the direct dynamic stiffness method. The
formulation used represents an extension of the work of Langley (1989a) to the case
of in-plane vibrations: full details are given by Bercin (1993). The response of the
structure to an out-of-plane harmonic point load applied to the first plate has been
computed over the frequency range 0.5-20 kHz, and the results obtained have been
averaged over nine randomly selected point load locations in the first plate. The
average vibrational energy of each plate thus obtained has then been further
averaged over sixteen one-third octave bands to yield a frequency response curve
which may be compared with sea and wia. The modal densities and group velocities
that are required by sEa and wia are standard for plate structures (see, for example,
Cremer et al. 1988), while the junction wave transmission coefficients have been
calculated by using the method of Langley & Heron (1990). Because of symmetry
only cosine Fourier terms were used in the wia technique, and five terms were used
for the inner plates while three terms were used for the two outmost plates.

Results for the bending vibrational energy of each plate for the one-third octave
band with centre frequency 5 kHz are shown in figure 2. It is clear that the wia
approach yields a very good estimate of the response, whereas sEa tends to
overestimate the response for plate 2 and severely underestimate the response for
subsequent plates. This is because the wave filtering effect of the structural junctions

Phil. Trans. R. Soc. Lond. A (1994)
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10l0g(E,/E,)
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0.5 5 20

frequency, f/ kHz

Figure 3. Bending energy in the last plate of the fifteen plate structure. Unmarked curve: exact
results. Diamond symbols: wia results. Triangle symbols: SEA results.
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frequency, f/ kHz
Figure 4. Bending energy in the last plate of the fifteen plate structure with simple support
coupling rather than direct connections. Unmarked curve: exact results. Diamond symbols: wia
results. Triangle symbols: sEA results.

is not considered by sEa: waves that are near normal to the various junctions tend
to have a high transmission coefficient in comparison with other wave headings, and
thus the wavefield becomes less and less diffuse as the vibration travels down the
structure. Results for the bending vibrational energy of the final plate over the full
frequency range are showi in figure 3, where the under prediction arising from sga
is again apparent. For comparison, results for ‘bending only’ transmission are shown
in figure 4; in this case the structure is taken to be ‘flat’ with line simple support
connections, so that no in-plane waves are generated. The differences between figures
3 and 4 are due solely to the effects of in-plane waves. As might be expected the
presence of in-plane waves increases the bending vibrational energy of the structure,
as the in-plane dynamics provides an additional ‘flanking path’ for vibration
transmission.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 5. Bending energy in the last plate of the stiffened plate array. Unmarked curve: exact
results. Diamond symbols: wia results for a high number of Fourier terms. Circle symbols: wria
results for a low number of Fourier terms. Triangle symbols: sra results.

The second example structure consists of a flat row of six plates which are coupled
via stiffeners. Each plate has width 0.5 m and thickness 2 mm while the plate lengths
(in metres) are 0.3, 0.26, 0.33, 0.28, 0.24 and 0.36. In this case the structure is
considered to be made from aluminium which has Young’s modulus E =
7.3x 10" N m~2, mass density p = 2800 kg m™®, and Poisson ratio v = 0.33. The
plates are coupled through symmetrically arranged rectangular stiffeners of thickness
3 mm and height 200 mm. As in the previous example, the first plate is subjected to
an out-of-plane harmonic point load and the dynamic stiffness method has been used
to compute the third octave band energy levels. For this example the symmetric
arrangement of the stringers prevents the generation of in-plane waves; in this case
the aim was to investigate the role of the elastic coupling without the complicating
effects of the in-plane dynamics. The vibrational energy in the final plate is shown
in figure 5, where it can be seen that sEa again leads to a severe under prediction of
the response. Two curves are shown for wia; one corresponds to the use of five
Fourier terms in the inner plate and three Fourier terms in the two outmost plates,
while the other corresponds to the use of 41 and 20 Fourier terms respectively. It can
be seen that the use of relatively few terms is adequate until around 10 kHz, beyond
which the additional terms are needed to capture the behaviour of the exact results.
The dip in the response curve at around 15 kHz is related to the behaviour of the
wave transmission coefficient of the junction; it should be noted that simple beam
theory has been used to model the stiffeners, so that internal dynamic effects have
not been considered. The angular dependency of the wavefield in the final plate at
20 kHz is shown in figure 6. Here 0 is defined such that 6 = 0 represents a wave which
is normal to the junction line. The exact curve which is shown in this figure has been
deduced from the dynamic stiffness analysis; with this approach the lateral
dependency of the response is modelled by a Fourier sine series. As the wavelength
of the bending waves at any particular frequency is known, it is possible to compute
the heading of the waves whose projected wavelength corresponds to a particular
Fourier sine component. A plot of vibrational energy against Fourier sine component
may thus be converted to a plot of vibrational energy against wave heading. It is
clear from figure 6 that the wavefield is far from diffuse, and good agreement between

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 6. Bending energy variation with wave heading for the final plate of the stiffened plate
array. One-third octave band with centre frequency 20 kHz. Unmarked curve: wia results. Star
symbols: exact results.

the exact and wia results is found. The small region of negative energy that is
predicted by wia may be corrected by the addition of further Fourier terms.

Further examples which cover a wide range of structures have been presented by
Bercin (1993).

5. Conclusions

The wave intensity technique which has been presented here is a natural extension
of conventional sEa. It has been shown that the method can yield much improved
response predictions over sEA with relatively little additional computational effort.
It has further been demonstrated that the method can be cast into the form of
conventional sEa with the addition of non-direct coupling loss factors, which
provides a link with earlier work and with other enhancements of sga. Although only
plate structures have been considered here, the method is applicable to the same wide
range of structures as SEA.
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